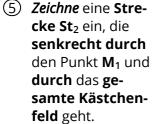

Wir konstruieren das "magische" Ei

Hinweis zu dieser Partnerarbeit


Lies dir die Aufgaben jeweils aufmerksam durch und beschrifte alles wie vorgegeben (mit Bleistift), damit du den <u>Überblick</u> behälst. *Kläre* mögliche Fragen mit deinem Partner (flüstern). Am Lehrerpult stehen euch gegebenenfalls gestufte Tippkarten zu den einzelnen Schritten zur Verfügung. Arbeitet möglichst genau!

- (1) *Markiere* im Kästchenfeld (in der Mitte des Blattes) einen **Punkt**, der **ca. 3cm von** der unteren Feldbegrenzung und jeweils etwa gleich weit von der rechten und linken Feldbegrenzung entfernt ist. Beschrifte ihn mit M₁.
- (2) **Stelle** deinen Zirkel auf den **Radius 3cm ein** und **zeichne** um den Punkt M₁ einen ganzen Kreis K₁.
- (3) **Zeichne** eine **Stre**cke St₁ ein, die waagerecht liegt, durch den Punkt M₁ geht und genau **durch** den eingezeichneten Kreis K₁ geht (Durchmesser).

(4) Die Strecke St₁ schneidet den Kreis K₁ links und rechts. Nenne den linken Schnittpunkt S₁ und den rechten Schnittpunkt **S**₂.

- (6) Die Strecke St₂ schneidet den Kreis K₁ oben und unten. Nenne den Schnittpunkt oben S3 und unten S4.
- (7) **Stelle** deinen Zirkel auf den **Radius 6cm ein** (von S_1 bis S_2) und **zeichne um** den Punkt S_1 einen Viertelkreis K₂ (von S₂ nach oben). Wiederhole den Vorgang um Punkt S₂ (K₃).
- Zeichne eine Strecke St₃ ein, die von Punkt S₁ durch S₃ und bis K₂ geht und eine Strecke St₄ ein, die von Punkt S₂ durch S₃ und bis K₃ geht.

Seite 1/2 Mathematik

- Die Strecke St₃ schneidet den Viertelkreis K₂. Nenne den Schnittpunkt S₅. Die Strecke St₅ schneidet den Viertelkreis K₃. Nenne den Schnittpunkt S₆.
- 10) Stelle deinen Zirkel auf den Radius der Strecke von S_3 bis S_5 ein und zeichne um den Punkt S_3 einen Viertelkreis K_4 von S_5 nach S_6 .
- 1
- 11) Trage mit dem gleichen Radius (von S₃ bis S₅) um den Punkt S₁ auf der Strecke St₁ eine kleine Markierung S₇ ein. Wiederhole den Vorgang um Punkt S₂ (S₈) und um Punkt S₄ auf der Strecke St₂ (S₉).

- (12) Verbinde die Punkte S₇ und S₉ und die Punkte S₈ und S₉.
- 13 Zeichne alle benötigten Markierungen (siehe auf dem Bild links) auf deiner Konstruktion mit Füller nach und radiere anschließend alle überflüssigen Linien und Markierungen weg. Das magische Ei ist fertig!

Bonusaufgaben für schnelle Paare:

14) Albert behauptet, dass der **Abstand von S**₁ **und S**₂ **und S**₉ **zu S**₃ **jeweils gleich groß** ist. Versuche **zeichnerisch** zu *überprüfen*, **ob er recht hat**. (**Tipp**: nutze den **Zirkel**)

(15) Albert behauptet auch, dass der **Abstand von der Eispitze zu** den Punkten S₁, S₂ und S₉ jeweils gleich groß ist. Versuche zeichnerisch zu *überprüfen*, ob er recht hat. (Tipp: nutze den Zirkel)

16 Links findest du die Abbildung des "gebrochenen Herzes".
Genau wie das "magische Ei", kann auch das "gebrochene Herz"
mit einem Zirkel und einem Lineal konstruiert werden.
Versuche das "gebrochene Herz" in deinem Heft zu konstruieren und schreibe dann eine Konstruktionsanleitung dazu.
(Tipp: das Herz besteht aus einem Quadrat und zwei Halbkreisen)

Mathematik Seite 2/2